The Perron-Frobenius Theorem

The Perron-Frobenius Theorem establishes powerful assertions about the eigenvalues and eigenvectors of certain types of matrices that are non-negative, which are incredibly insightful when dealing with dynamical systems, economics, demography, and beyond. This post offers an accessible proof of the theorem, which is carefully curated from lecture contents of CIE6002 Matrix Analysis.

Notations

  • \(\boldsymbol{A} \in \mathbb{R}^{m \times m}\): an \(m\) by \(m\) matrix.
  • \(\Vert \cdot \Vert\): in most cases it refers to matrix norm.
  • \(\displaystyle \Vert \boldsymbol{A} \Vert_1 = \max_{j=1,2,\ldots,m} \sum_{i=1}^{m} \boldsymbol{A}_{ij}\): the maximum absolute column sum of the matrix.
  • \(\displaystyle \Vert \boldsymbol{A} \Vert_\infty = \max_{i=1,2,\ldots,m} \sum_{j=1}^{m} \boldsymbol{A}_{ij}\): the maximum absolute row sum of the matrix.

The theorem

Let \(\boldsymbol{A} \in \mathbb{R}^{n \times n}\) be positive. That is, \(\boldsymbol{A}_{ij} > 0, \forall 1 \le i,j \le m\). The spectral radius is defined as

\[\rho(\boldsymbol{A}) = \max_{i} |\lambda_i|\]

where \(\lambda_i\) is the \(i\)-th eigenvalue of \(\boldsymbol{A}\). Then

  1. \(\rho(\boldsymbol{A}) > 0\), and \(\rho(\boldsymbol{A})\) is an eigenvalue of \(\boldsymbol{A}\);
  2. The corresponding eigenvector of \(\rho(\boldsymbol{A})\) is positive (or negative);
  3. \(\lvert \lambda \rvert < \rho(\boldsymbol{A})\) for any \(\boldsymbol{A}\)’s eigenvalue \(\lambda \ne \rho(\boldsymbol{A})\);
  4. \(\operatorname{dim}(\operatorname{Null}(\boldsymbol{A} - \rho(\boldsymbol{A})\boldsymbol{I})) = 1\).

Some lemmas

Lemma 1: \(\rho(\boldsymbol{A}) \le \Vert \boldsymbol{A} \Vert\) for any matrix norm \(\Vert\cdot\Vert.\)

Proof: Let \(\boldsymbol{Av} = \lambda \boldsymbol{v}\) with \(\lvert\lambda\rvert = \rho(\boldsymbol{A})\). Let \(\boldsymbol{V} = \boldsymbol{v} \boldsymbol{1}^\top \in \mathbb{R}^{m \times m}\). Then

\[\begin{align*} &\boldsymbol{AV} = \lambda \boldsymbol{V} \\ \Rightarrow &\Vert\boldsymbol{AV}\Vert = \lvert \lambda \rvert \cdot \Vert\boldsymbol{V}\Vert \le \Vert\boldsymbol{A}\Vert \cdot \Vert\boldsymbol{V}\Vert \\ \Rightarrow & \lvert \lambda \rvert = \rho(\boldsymbol{A}) \le \Vert\boldsymbol{A}\Vert. \end{align*}\]

Lemma 2: Given \(\varepsilon > 0\). There exists a matrix norm \(\Vert\cdot\Vert\) s.t. \(\rho(\boldsymbol{A}) \le \Vert\boldsymbol{A}\Vert \le \rho(\boldsymbol{A}) + \varepsilon \Rightarrow \rho(\boldsymbol{A}) = \inf_{\Vert\cdot\Vert} \Vert\boldsymbol{A}\Vert\).

Proof: The Schur triangularization of \(\boldsymbol{A}\) is \(\boldsymbol{A} = \boldsymbol{UTU}^\top\), where \(\boldsymbol{U}\) is unitary and diagonals \(\lambda_1, \ldots, \lambda_m\) of \(\boldsymbol{T}\) are eigenvalues of \(\boldsymbol{A}\). Define

\[\begin{align*} \Vert\boldsymbol{A}\Vert &\triangleq \Vert(\boldsymbol{UD}_t^{-1})^{-1}\boldsymbol{A}(\boldsymbol{UD}_t^{-1})\Vert_1 \\ &= \Vert\boldsymbol{D}_t \boldsymbol{U}^\top \boldsymbol{AUD}_t^{-1}\Vert_1 \\ &= \Vert\boldsymbol{D}_t \boldsymbol{T} \boldsymbol{D}_t^{-1}\Vert_1 \\ &= \Vert\begin{bmatrix} \lambda_1 & t^{-1}T_{12} & t^{-2}T_{13} & \cdots & t^{-m+1}T_{1m}\\ & \lambda_2 & t^{-1}T_{13} & \cdots & t^{-m+2}T_{2m}\\ & & \lambda_3 & \cdots & t^{-m+3}T_{3m} \\ & & & \ddots & \vdots \\ & & & & \lambda_m \end{bmatrix}\Vert_1 \\ &\le \rho(\boldsymbol{A}) + \varepsilon \quad \text{for large}\ t \end{align*}\]

where \(\boldsymbol{D}_t = \begin{bmatrix} t^1 & & & \\ & t^2 & & \\ & & \ddots & \\ & & & t^m \end{bmatrix}.\)


Lemma 3: \(\lim_{k \to \infty} \boldsymbol{A}^k = \boldsymbol{0} \iff \rho(\boldsymbol{A}) < 1.\)

Proof: The “\(\Rightarrow\)” part. Let \(\boldsymbol{Av} = \lambda \boldsymbol{v}\) for any eigenvalue \(\lambda\) of \(\boldsymbol{A}\). Then

\[\boldsymbol{A}^k\boldsymbol{v} = \lambda^k \boldsymbol{v} \Rightarrow \lambda^k \to 0 \Rightarrow |\lambda| < 1 \Rightarrow \rho(\boldsymbol{A}) < 1.\]

The “\(\Leftarrow\)” part. By Lemma 2, \(\exists\ \Vert\cdot\Vert\) s.t. \(\Vert\boldsymbol{A}\Vert < 1.\) Then

\[0 \le \lim_{k \to \infty} \Vert\boldsymbol{A}^k\Vert \le \lim_{k \to \infty} \Vert\boldsymbol{A}\Vert^k = 0 \Rightarrow \lim_{k \to \infty} \boldsymbol{A}^k = \boldsymbol{0}.\]

Lemma 4: Let \(\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{m \times m}\) and \(\vert \boldsymbol{A} \vert \le \boldsymbol{B}\) element-wise. Then

\[\rho(\boldsymbol{A}) \le \rho(\boldsymbol{\vert A \vert}) \le \rho(\boldsymbol{B}).\]

Proof:

\[\begin{align*} &\boldsymbol{A} \le \boldsymbol{\vert A \vert} \le \boldsymbol{B} \\ \Rightarrow& \boldsymbol{A}^k \le \boldsymbol{\vert A \vert}^k \le \boldsymbol{B}^k \\ \Rightarrow& \Vert \boldsymbol{A}^k \Vert_F \le \Vert \boldsymbol{\vert A \vert}^k \Vert_F \le \Vert \boldsymbol{B}^k \Vert_F \\ \Rightarrow& \Vert \boldsymbol{A}^k \Vert_F^{1/k} \le \Vert \boldsymbol{\vert A \vert}^k \Vert_F^{1/k} \le \Vert \boldsymbol{B}^k \Vert_F^{1/k} \\ \Rightarrow& \rho(\boldsymbol{A}) \le \rho(\boldsymbol{\vert A \vert}) \le \rho(\boldsymbol{B}). \end{align*}\]

The last step is given by Theorem 1.

Corollary 4.1: Let \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise. Then for any principal submatrix of \(\boldsymbol{A}\), denoted as \(\tilde{\boldsymbol{A}}\), we have \(\rho(\tilde{\boldsymbol{A}}) \le \rho(\boldsymbol{A}) \Rightarrow \max_{i} \boldsymbol{A}_{ii} \le \rho(\boldsymbol{A})\).


Lemma 5: Let \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise. If row (column) sums of \(\boldsymbol{A}\) are constant, then \(\rho(\boldsymbol{A}) = \Vert \boldsymbol{A} \Vert_\infty\) (\(\rho(\boldsymbol{A}) = \Vert \boldsymbol{A} \Vert_1\)).

Proof: Suppose \(\boldsymbol{A1} = \alpha \boldsymbol{1}\) where \(\alpha \ge 0\) is the row sum, and thus is an eigenvalue of \(\boldsymbol{A}\). So \(\alpha \le \rho(\boldsymbol{A})\). But \(\alpha = \Vert \boldsymbol{A} \Vert_\infty \ge \rho(\boldsymbol{A})\), so \(\rho(\boldsymbol{A}) = \Vert \boldsymbol{A} \Vert_\infty.\) The column sum case is similar.


Lemma 6: Let \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise. Then

\[\min_{i = 1, \ldots, m} \sum_{j = 1}^m \boldsymbol{A}_{ij} \le \rho(\boldsymbol{A}) \le \Vert \boldsymbol{A} \Vert_\infty,\ \min_{j = 1, \ldots, m} \sum_{i = 1}^m \boldsymbol{A}_{ij} \le \rho(\boldsymbol{A}) \le \Vert \boldsymbol{A} \Vert_1\]

Proof: Let

\[\alpha = \min_{i = 1, \ldots, m} \sum_{j = 1}^m \boldsymbol{A}_{ij} \ne 0.\]

\(\alpha = 0\) is a trivial case, so assume \(\alpha \ne 0\). Construct a new matrix \(\boldsymbol{B}\) by multiplying \(\alpha / \sum_{j=1}^m \boldsymbol{A}_{ij}\) to each \(i\)-th row of \(\boldsymbol{A}\).

So \(\boldsymbol{0} \le \boldsymbol{B} \le \boldsymbol{A}\) element-wise, and \(\boldsymbol{B}\) has a constant row sum equal to \(\alpha \Rightarrow \alpha = \rho(\boldsymbol{B}) \le \rho(\boldsymbol{A})\) by Lemma 4 and 5. \(\rho(\boldsymbol{A}) \le \Vert \boldsymbol{A} \Vert_\infty\) by Lemma 1. The column sum case is similar.


Lemma 7: Let \(\boldsymbol{A} > \boldsymbol{0}\) element-wise. Suppose \(\boldsymbol{Ax} = \lambda \boldsymbol{x}\), and \(\vert \lambda \vert = \rho(\boldsymbol{A})\). Then \(\exists\ \theta \in \mathbb{R}\) s.t. \(e^{-j\theta} \boldsymbol{x} = \vert \boldsymbol{x} \vert > \boldsymbol{0}\) element-wise. Here \(j = \sqrt{-1}\).

Proof: \(\vert \boldsymbol{Ax} \vert = \vert \lambda \vert \vert \boldsymbol{x} \vert = \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert\). By Theorem 3, \(\boldsymbol{A} \vert \boldsymbol{x} \vert = \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert\). So \(\vert \boldsymbol{Ax} \vert = \boldsymbol{A} \vert \boldsymbol{x} \vert\) and \(\vert \boldsymbol{x} \vert > \boldsymbol{0}\). For any \(1 \le i \le m\),

\[[\vert \boldsymbol{Ax} \vert]_i = \left\vert \sum_{j=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k \right\vert = \sum_{k=1}^m \boldsymbol{A}_{ik} \vert \boldsymbol{x}_k \vert\]

For any \(\boldsymbol{x}_k \in \mathbb{C}, \boldsymbol{x}_k = \vert \boldsymbol{x}_k \vert e^{j\theta_k} = \vert \boldsymbol{x}_k \vert \cos(\theta_k) + \vert \boldsymbol{x}_k \vert \sin(\theta_k) \cdot j\). So

\[\begin{align*} &\left\vert \sum_{j=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k \right\vert = \sum_{k=1}^m \boldsymbol{A}_{ik} \vert \boldsymbol{x}_k \vert \\ \Rightarrow& \left(\sum_{j=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k\right) e^{-j\theta} = \sum_{k=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k e^{-j\theta_k} \\ \Rightarrow& \sum_{j=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k e^{-j\theta} = \sum_{k=1}^m \boldsymbol{A}_{ik} \boldsymbol{x}_k e^{-j\theta_k} \\ \Rightarrow& \theta_k = \theta, k=1, \ldots, m. \end{align*}\]

Some theorems

Theorem 1: \(\rho(\boldsymbol{A}) = \lim_{k \to \infty} \Vert \boldsymbol{A}^k \Vert^{1/k}\) for any matrix norm.

Proof: The aim is to show \(0 \le \Vert \boldsymbol{A}^k \Vert^{1/k} - \rho(\boldsymbol{A}) \le \varepsilon\) for large \(k\).

To see this, \(\rho^k(\boldsymbol{A}) = \rho(\boldsymbol{A^k}) \le \Vert \boldsymbol{A}^k \Vert\) by Lemma 2. Thus \(\rho(\boldsymbol{A}) \le \Vert \boldsymbol{A}^k \Vert^{1/k} \Rightarrow 0 \le \Vert \boldsymbol{A}^k \Vert^{1/k} - \rho(\boldsymbol{A})\).

Let \(\tilde{\boldsymbol{A}} = \frac{1}{\varepsilon + \rho(\boldsymbol{A})} \boldsymbol{A}\). It’s easy to see \(\rho(\tilde{\boldsymbol{A}}) < 1\). Then for \(k\) large enough \(\Vert \tilde{\boldsymbol{A}}^k \Vert \le 1 \Leftrightarrow \frac{1}{(\varepsilon + \rho(\boldsymbol{A}))^k} \Vert \boldsymbol{A}^k \Vert \le 1 \Leftrightarrow \Vert \boldsymbol{A}^k \Vert^{1/k} \le \varepsilon + \rho(\boldsymbol{A}).\)


Theorem 2: For any \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise and \(\boldsymbol{x} > \boldsymbol{0}\) element-wise,

\[\min_{i = 1, \ldots, m} \frac{1}{\boldsymbol{x}_i}\sum_{j=1}^m \boldsymbol{A}_{ij} \boldsymbol{x}_j \le \rho(\boldsymbol{A}) \le \max_{i = 1, \ldots, m} \frac{1}{\boldsymbol{x}_i}\sum_{j=1}^m \boldsymbol{A}_{ij} \boldsymbol{x}_j\]

Proof: Define \(\bar{\boldsymbol{A}} \triangleq \boldsymbol{S}^{-1}\boldsymbol{A}\boldsymbol{S}\), where

\[\boldsymbol{S} = \begin{bmatrix} \boldsymbol{x}_1 & & & \\ & \boldsymbol{x}_2 & & \\ & & \ddots & \\ & & & \boldsymbol{x}_m \end{bmatrix},\ \boldsymbol{S}^{-1} = \begin{bmatrix} \frac{1}{\boldsymbol{x}_1} & & & \\ & \frac{1}{\boldsymbol{x}_2} & & \\ & & \ddots & \\ & & & \frac{1}{\boldsymbol{x}_m} \end{bmatrix}.\]

\(\rho(\bar{\boldsymbol{A}}) = \rho(\boldsymbol{A})\) as \(\bar{\boldsymbol{A}}\) and \(\boldsymbol{A}\) have same eigenvalues. Apply Lemma 6 to \(\bar{\boldsymbol{A}}\).

Corollary 2.1: For any \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise and \(\boldsymbol{x} > \boldsymbol{0}\) element-wise, if

\[\alpha \boldsymbol{x} \le \boldsymbol{Ax} \le \beta \boldsymbol{x}\]

where \(\alpha, \beta \ge 0\). Then \(\alpha \le \rho(\boldsymbol{A}) \le \beta\). If the inequality is strict, \(\alpha < \rho(\boldsymbol{A}) < \beta\).

Proof:

\[\begin{align*} \alpha \boldsymbol{x}_i \le \sum_{j=1}^m \boldsymbol{A}_{ij}\boldsymbol{x}_j \Rightarrow \alpha \le \frac{1}{\boldsymbol{x}_i} \sum_{j=1}^m \boldsymbol{A}_{ij}\boldsymbol{x}_j \Rightarrow \alpha \le \min_{i = 1, \ldots, m} \frac{1}{\boldsymbol{x}_i}\sum_{j=1}^m \boldsymbol{A}_{ij} \boldsymbol{x}_j \le \rho(\boldsymbol{A}). \end{align*}\]

\(\rho(\boldsymbol{A}) \le \beta\) is similar.

Corollary 2.2: If \(\boldsymbol{A} \ge \boldsymbol{0}\) element-wise and has a eigenvector \(\boldsymbol{x} > \boldsymbol{0}\) element-wise. Then the associated eigenvalue must be \(\rho(\boldsymbol{A})\).

Proof: \(\lambda \boldsymbol{x} \le \boldsymbol{Ax} \le \lambda \boldsymbol{x} \Rightarrow \lambda \le \rho(\boldsymbol{A}) \le \lambda \Rightarrow \rho(\boldsymbol{A}) = \lambda.\)


Theorem 3: Let \(\boldsymbol{A} > \boldsymbol{0}\) element-wise. Suppose \(\boldsymbol{Ax} = \lambda \boldsymbol{x}\) for some \(\lambda \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^{m}\), and \(\vert \lambda \vert = \rho(\boldsymbol{A})\). Then \(\boldsymbol{A} \vert \boldsymbol{x} \vert = \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert\) and \(\vert \boldsymbol{x} \vert > \boldsymbol{0}\).

Proof: By Corollary 4.1, \(0 < \max_i \boldsymbol{A}_{ii} \le \rho(\boldsymbol{A})\). \(\boldsymbol{Ax} = \lambda\boldsymbol{x} \Rightarrow \vert \boldsymbol{Ax} \vert = \vert \lambda \vert \vert \boldsymbol{x} \vert = \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert \le \boldsymbol{A} \vert \boldsymbol{x} \vert.\) Define \(\boldsymbol{y} \triangleq \boldsymbol{A} \vert \boldsymbol{x} \vert - \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert \ge \boldsymbol{0}\) element-wise.

  • If \(\boldsymbol{y} \equiv \boldsymbol{0}\), i.e., \(\rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert = \boldsymbol{A} \vert \boldsymbol{x} \vert\) element-wise: since \(\boldsymbol{A} \vert \boldsymbol{x} \vert > \boldsymbol{0}\) element-wise and \(0 < \rho(\boldsymbol{A})\), \(\vert \boldsymbol{x} \vert > \boldsymbol{0}\) element-wise.
  • If \(\boldsymbol{y}_i > 0\) for some \(i\), let \(\boldsymbol{z} \triangleq \boldsymbol{A} \vert \boldsymbol{x} \vert > \boldsymbol{0}\) element-wise. Then
\[\begin{align*} &\boldsymbol{0} < \boldsymbol{Ay} = \boldsymbol{A}(\boldsymbol{A} \vert \boldsymbol{x} \vert - \rho(\boldsymbol{A}) \vert \boldsymbol{x} \vert) = \boldsymbol{Az} - \rho(\boldsymbol{A}) \boldsymbol{z} \\ \Rightarrow& \rho(\boldsymbol{A}) \boldsymbol{z} < \boldsymbol{Az} \\ \Rightarrow& \rho(\boldsymbol{A}) < \rho(\boldsymbol{A})\qquad \text{by Corollary 2.1} \end{align*}\]

which is a contradiction. So \(\boldsymbol{y} \equiv \boldsymbol{0}\).


Theorem 4: Let \(\boldsymbol{A} > \boldsymbol{0}\) element-wise. Then \(\forall\ \lambda \ne \rho(\boldsymbol{A}), \vert \lambda \vert < \rho(\boldsymbol{A})\).

Proof: Suppose \(\exists\ \lambda \ne \rho(\boldsymbol{A})\) but \(\vert \lambda \vert = \rho(\boldsymbol{A})\) and \(\boldsymbol{Ax} = \lambda \boldsymbol{x}\). By Lemma 7, \(\exists\ \theta \in \mathbb{R}\) s.t. \(\vert \boldsymbol{x} \vert = e^{-j\theta} \boldsymbol{x} > \boldsymbol{0}\). \(\boldsymbol{Ax} = \lambda \boldsymbol{x} \Rightarrow \boldsymbol{A} \vert \boldsymbol{x} \vert = \lambda \vert \boldsymbol{x} \vert\). By Corollary 2.2 \(\lambda = \rho(\boldsymbol{A})\), which is a contradiction.


Theorem 5: Let \(\boldsymbol{A} > \boldsymbol{0}\) element-wise. Suppose for two vectors \(\boldsymbol{w}, \boldsymbol{z}\) s.t. \(\boldsymbol{Aw} = \rho(\boldsymbol{A})\boldsymbol{w}, \boldsymbol{Az} = \rho(\boldsymbol{A})\boldsymbol{z}\). Then \(\exists\ \alpha \in \mathbb{C}\) s.t. \(\boldsymbol{w} = \alpha \boldsymbol{z}\), i.e., \(\operatorname{dim}(\operatorname{Null}(\boldsymbol{A} - \rho(\boldsymbol{A})\boldsymbol{I})) = 1\).

Proof: By Lemma 7, \(\exists\ \theta_1, \theta_2\) s.t. \(\boldsymbol{q} = \vert \boldsymbol{w} \vert = e^{-j\theta_1} \boldsymbol{w} > \boldsymbol{0}, \boldsymbol{p} = \vert \boldsymbol{z} \vert = e^{-j\theta_2} \boldsymbol{z} > \boldsymbol{0}\). By Theorem 3 \(\boldsymbol{Aq} = \rho(\boldsymbol{A})\boldsymbol{q}, \boldsymbol{Ap} = \rho(\boldsymbol{A})\boldsymbol{p}\). Let \(\beta = \min_{i=1,\ldots, m} \frac{\boldsymbol{q}_i}{\boldsymbol{p}_i}\) and \(\boldsymbol{r} = \boldsymbol{q} - \beta \boldsymbol{p} \ge \boldsymbol{0}\) with \(\boldsymbol{r}_j = 0\) for some \(j\). Then

\[\begin{align*} \boldsymbol{Ar} &= \boldsymbol{Aq} - \beta \boldsymbol{Ap}\\ &= \rho(\boldsymbol{A})\boldsymbol{q} - \beta \rho(\boldsymbol{A})\boldsymbol{p}\\ &= \rho(\boldsymbol{A})\boldsymbol{r} \end{align*}\]
  • If \(\boldsymbol{r} \equiv \boldsymbol{0}\), then \(\boldsymbol{q} = \beta \boldsymbol{p}\).
  • If \(\boldsymbol{r}_k > 0\) for some \(k\), then \(\boldsymbol{Ar} = \rho(\boldsymbol{A})\boldsymbol{r}>\boldsymbol{0} \Rightarrow \boldsymbol{r} > \boldsymbol{0}\) which is a contradiction.

So \(\boldsymbol{r} = \boldsymbol{0} \Rightarrow \boldsymbol{q} = \beta \boldsymbol{p} \Rightarrow \boldsymbol{w} = \alpha \boldsymbol{z}\).

An application

Irreducible matrix: Let \(\boldsymbol{A} \in \mathbb{R}^{m \times m}, \boldsymbol{A} \ge \boldsymbol{0}\) element-wise. \(\boldsymbol{A}\) is irreducible if for each index \((i, j), \exists\ k \in \mathbb{N}^+\) s.t. \([\boldsymbol{A}^k]_{ij} > 0\).

Subinvariance Theorem: Let \(\boldsymbol{A} \ge \boldsymbol{0}\) be irreducible. Suppose for some \(\boldsymbol{y} \ge \boldsymbol{0}, \boldsymbol{y} \ne \boldsymbol{0}\) and \(s > 0\), we have \(\boldsymbol{Ay} \le s\boldsymbol{y}\). Then

  1. \(\boldsymbol{y} > \boldsymbol{0}\);
  2. \(\rho(\boldsymbol{A}) \le s\);
  3. \(\rho(\boldsymbol{A}) = s \iff \boldsymbol{Ay} = s\boldsymbol{y}\).

Proof:

  1. Suppose \(\boldsymbol{y}_i = 0\) for some \(i\), then \(0 \le [\boldsymbol{Ay}]_i \le s \cdot 0 = 0 \Rightarrow [\boldsymbol{Ay}]_i = 0\). Let \(\boldsymbol{z} \triangleq \boldsymbol{Ay}\), then \(\boldsymbol{Az} \le s \boldsymbol{Ay} = s \boldsymbol{z}\). As \(\boldsymbol{z}_i = [\boldsymbol{Ay}]_i = 0, [\boldsymbol{Az}]_i = 0\). Repeat this and we get \([\boldsymbol{A}^k\boldsymbol{y}]_i = 0\) for any \(k\). But for \(k\) large enough \(\boldsymbol{A}^k > \boldsymbol{0}\) which is a contradiction.
  2. Corollary 2.1.
  3. The “\(\Leftarrow\)” part is from Corollary 2.1 so we only need to prove the “\(\Rightarrow\)” part. Suppose \([\boldsymbol{Ay}]_i < s \boldsymbol{y}_i\) for some \(i\). Define \(\boldsymbol{z} = s \boldsymbol{y} - \boldsymbol{Ay} \ge \boldsymbol{0}\) and \(\boldsymbol{z} \ne \boldsymbol{0}\). For \(k\) large enough, \(\boldsymbol{A}^k \boldsymbol{z} = s \boldsymbol{A}^k\boldsymbol{y} - \boldsymbol{A}^k\boldsymbol{Ay} = s \boldsymbol{x} - \boldsymbol{Ax} > \boldsymbol{0}\) where \(\boldsymbol{x} = \boldsymbol{A}^k \boldsymbol{y} > \boldsymbol{0}\). So \(\boldsymbol{Ax} < s \boldsymbol{x} \Rightarrow \rho(\boldsymbol{A}) < s = \rho(\boldsymbol{A})\) by Corollary 2.1, which is a contradiction.

Power control in wireless network: \(\boldsymbol{A} \ge \boldsymbol{0}\) and is irreducible. \(\boldsymbol{p}, \boldsymbol{b} \in \mathbb{R}^m\) and \(\boldsymbol{b} \ge \boldsymbol{0}\). Suppose \(\boldsymbol{A}, \boldsymbol{b}\) are known, then

\[\begin{cases} \boldsymbol{Ap} + \boldsymbol{b} \le \boldsymbol{p} \\ \boldsymbol{p} \ge \boldsymbol{0} \end{cases}\]

is feasible w.r.t \(\boldsymbol{p} \iff \rho(\boldsymbol{A}) < 1\).

Proof: The “\(\Leftarrow\)” part. We show \((\boldsymbol{I} - \boldsymbol{A})^{-1}\) exists and \((\boldsymbol{I} - \boldsymbol{A})^{-1} > \boldsymbol{0}\) element-wise, so \(\boldsymbol{p} = (\boldsymbol{I} - \boldsymbol{A})^{-1}\boldsymbol{b}\) is a feasible point.

\[(\boldsymbol{I} - \boldsymbol{A}) \lim_{k \to \infty} \sum_{i=0}^k \boldsymbol{A}^k = \lim_{k \to \infty} (\boldsymbol{I} - \boldsymbol{A}^{k+1}) = \boldsymbol{I}.\]

\(\lim_{k \to \infty} \boldsymbol{A}^{k+1} = \boldsymbol{0}\) by Lemma 3. So \((\boldsymbol{I} - \boldsymbol{A})^{-1} = \lim_{k \to \infty} \sum_{i=0}^k \boldsymbol{A}^k > \boldsymbol{0}\) since \(\boldsymbol{A}\) is irreducible.

The “\(\Rightarrow\)” part. As \(\boldsymbol{b} \ge \boldsymbol{0}\), we have \(\boldsymbol{Ap} \le \boldsymbol{p}, \boldsymbol{p} \ge \boldsymbol{0}\). By Subinvariance Theorem, \(\boldsymbol{p} > \boldsymbol{0}\) and \(\rho(\boldsymbol{A}) \le 1\). If \(\rho(\boldsymbol{A}) = 1\), then \(\boldsymbol{Ap} = \boldsymbol{p}\) which is a contradiction as \(\boldsymbol{b} \ne \boldsymbol{0}\). So \(\rho(\boldsymbol{A}) < 1\).